ADVANCED DATA
STRUCTURES
&
ALGORITHMS
Prof. P.G.Joshi

SYLLABUS

ADVANCED DATASTRUCTURES &
ALGORITHMS

UNIT 115 Hrs Algorithm ~ Definition and Characteristics, Efficiency of an algorithm, Time and space

Categories of data structures, operations; Arrays storage representation of 1D, 2D and Multi-
i

UNIT 11 12 Hrs Stacks & Queues: Stack - Definition, Operation on stack, Implementation using arrays
and linked lsts, Applications of Stacks, Function Calling, Recursion- direct & indirect
recursion,valuation of arithmetic Expressions, Conversion of Expressions - Prefix, Infix and Postfix
expressions. Queves: Definition, Implementations using arrays and linked lists, Circular queue,
Dequeue, Priority queues, Applications of queues.

UNIT 1l 15 Hrs Linked lst: Concept of linked list, Operations on Linked list: Creation, insertion,
Deletion, Insertion and deletion examples, Types of linked list: Circular inked list, Doubly linked list,
Implementation of stack and queue using linked list Trees Graphs and their applications Trees
terminology, Bmary e, Travrsl methods, Tee trersl algonmms. Tvesded binary e, Goph
terminologies, Gra inked list, Gray

i
UNIT IV 12 Hrs Searching: Linear and Binary Sorting: Bubble sort, Selection sort, Insertion sort More
Backtrack

quer,

Reference books 1. Data Structure using C by AM. Tanenbaum, Yecidyan lang 2 Data Structure
Through C- By Dr. Sahani. 3. Data Structures Using C Yashwant Kanitkar — BPB Publication 4. Data
Structures Through C (A Practical Approach), G.S Baluja Danapat Rai & Co. 5. Fundamentals of Data
Structures, Ellis Horowitz and Sartaj Sajni Galgotia Publications 6. Introduction to data structures in C ,
Ashok N. Kamthane, Pearson Education 7. Theory and Problems of Data Structures, Schaums Outline
Series, Seymour Lipschutz

CONTENTS

Lectre.01 Inroduction to Data strcture
Lchrogz - Search Oprion

Lecture-03 Sparse Matrixand s represertations
protvier i

Lecure-05 Stack Appications

Lectue08 Qe

Lecure07 Ly Lst

Locure.08

Poynomial List
Lecture-09 Douply Linked List
Lecture-10 Crcular Liked List

Memory Alocation
Lecture-12 nfc to Postix Conversion

Loctwo-17 Briree
ered i e Teo 85T
Lecture-19 Graphs Ten
e ooty it scsvch
Lecture-21 Breadth Frst Sear
L2 Goghropastnion
Lecture-23 Topologeal Soring

o Sor

we-26 Seection Sort
Wo27 Merga Sort

Lecture-28 Quick sot

Lecture-29

Loctwo-30 Radix Sort

(oo oy Semch

Lecture-32

(en s Loy Forctiors

UNIT-I
Introduction to Data structur
In computer terms, a data siructure is a Speciic way 1o store and organize data in a
compuars marory 20 e these e can b isd ooty sl Dat may be
jed In many different ways such as the logical or mathematical model for
paricr ofganzaton o daia & ermed a5 a Gata Stire. The vanat of & paricuar
data model depends on the two factors

sty it must be loaded enough in sructure 1 reflect the actual reationships of
e ca it o el wor oo
so that

rocse e 6 s e s rocossny,
Categories of Data Structure:
The data sructure can be sub divided nto major types:

g
3

Linear Data St
'\ ca srctr is s o b Brr s slemerts combine toform any speifc oder,
Trers e basicaly o tecrdues of presntg sch near e i meror.
" Fistway is 10 provide the linear relationships among al the slemenis
Teprsanie by meane of et mmay ocaton Ths toer Sneaén o e 2
amays.
+The second techniaue is 1o provide the Inear relationship among al the ekmerls.
represented by using the concept of pointers or lnks. These linear sirucures are termed
as linked fists.
“The common examples of inear data structure are:

Arrays

e
&

Non finear Data Structure:
This strcture is mosty used forrepresenting data that cortains a hierarchical
relationship among various elemerts.

Examples of Non Linear Data Structures are listed below:

o Grapts

- family of trees and
- table of contents

Troe: In tis case, data often cortain herarchical relationship among various.
lemerts. The data siructure tha refects tis relationship s termed as rooted tree

Graph: In tis case, data somelimes hol a relationship between the pairs of clemerts.
which is ot necessarily following the ierarchical struciure. Such data siructure is
termed as a Graph,
Inay s cortainer whih can ok a fx namberoffms ad these emsstou b of
the same type. Most of the data siruclures make use of arays (o implement their
algoritms. Following are the important torms to understand the concept of Aay.
Eloment - Each item stored in an anay i caled an slemen.

Index - Each acation of an elemert in an aray has a numerical Index, whih s used
o identify the elemert.
Array Representaton{(Storagestructure)

rays can be deciared in various ways in diferent languages. For ilustration, lt's take
C aray declration.

int aray [1

{35,33,42,10,16,19,27, 44, 26,31)

Artays can be declared in various ways in differentlanguages. For lustration, lts take
G aray dociration.

ctements 3538 |[az [10|[14 [19][zr [| 20 [0

ndx 0 1 2 3 4

Sizo:10
As per the above lustration, following are the important poits to be considored
+ Index starts wih 0.
«__ Array length s 10 which means it can store 10 elements.
“Each sloment can be accessed via s index. For exampe, we can feich an elament at
index 6 250

Basic Oporatons.
Folowing are the basic operations supported by an aay.

. int al the array elements ore by one.
. Adds an element at the given index.
. Dektes andrrert ot ghen

o an clocnent uieg i ien nd o by 1 vk
© Updats - Upstosandomrs af h hen e
I G whan ey i lalkzad wth iz, b T assign defauts vales o s
elemerts in folowing

Data fyp! Default Value

bool fake

greph ora tee.
char o
int o
foat 00
double oor
void
wehar o

Insertion Operation
Insert operation is 1o insert one or more data elements info an array. Based on the
requirement, a new element can be added at the beginning, end, or any given index of
arma

Here, we see a practical implementation of inserion operation, where we dd data at

the end of he amay -

Aigorithm
Let LA be a Linear Array (unordered) with N slemerds and K s a posilve integer such
that K<=N. Following is the algorithm where [TEM is nserted inlo the K posiion of LA

Start
ot J =N
SetN =N+t

Repeat steps 5 and 6 while J >= K
Set LAL+1]= LA

Examplo
Folowing is the implemertation of the above aigorithm —

tinclude <stdio >

main) {
I LAD = (13678},
inttom = 10, = 3,n =

inti=0,
print("The original aray eloments are)
fori= ;i< i+4) {

prinfCLA%c]
)

Sha v, 1, LA

02/02/2023

}
LAK = tem,
print("The array elements after nsertion ')
fori=0: i< 1+4)

prin(CLASc] = %a W, 1, LA,

When we complle and execute the above program, it produces the folowing resut -
Output

“The orginal array clements are
LA

Daeton wferlo o anoxsg mer fom i ey e -rgenzr o
mensofen

Aaort
Comdor LA i a fnear aray with N lomerts and K is a posive mger sich that
Ks=N. Following is the algorithm to delete an element availabe at the K position of LA.

1. Start

2.Setd=K
3. Ropeat steps 4 and 5 whis J <N
4 LA+ 1]

Example

Folowing is the implemertation of the above algoritm -
Hinclude <stdio
void main)

wmu—msm

kT o aray olmers rs)
fori=0: i< i++)

prn(LA%c]
}

1 LAT:

ik
while(j <)
LAGH] = LA,
1

it T s s e doton)
fori=0: i< i++){

LA 00

L LA

)
When we compile and execute the above program, it produces the folowing resuit -
Output
The original array elements are
=1

Lectureqz
rch Operation
You can perform a search for an array element based on s vale o s ndex.
Algorithm
Consider LA s a near array with N lements and K s a positie infeger such that
Folowing s the algorithm 10 find an clement with a value of ITEM using
soquential search
Start

1
2.Set=0
3. Ropeat steps 4 and 5 whis J

4.1F LAU] s equal ITEM THEN GOTO STEP 6
5.SetJ=J+1

6. PRINT J, ITEM

Stop

Example
Folowing is the implemertation of the above aigorithm —

Hinclude <sidio >
void main) {

nt LA =
intftem

1.35.7.8);
n=5

ini=0,=0
print("The original rray elements are)
forli= ;i< 1++)

prinf(CLAf%d] = %d "

while j < n){
H{LAf] = tem
o

)

print("Found element %d at positon %\, flem, [+1)
‘When we compile and execute the above program, it produces th folowing result ~
Output

The original array elements are
LAD]= 1

LA =

LA4] =B

Found element 5 at positiond
Update Operation

an existing t -

Aigorithm
Ccrmder LAis a linear array with N elements and K s a positive infeger such
ko 1 1 ioni 1 Udete an sement avlne i th K poson. of

o
1. Start

2 Set LAK-1] = ITEM

3.5top

Examplo

Folowing is the implementation of the above aigorithm —

Hinclude <stdo >

void main) {
it LA = (13,

578)
=5, ftem

.mm e orgal ey cmerts o '
i){

e
)

LAfKc1] = tom;
print("The array elements after updation '),
fori= 0: i<, i++){

prinf(LA%c]

i, LA

When we complle and execute the above program, it produces the folowing resut -
Output

“The orginal array elements are
LA = 1

gl =7
L=

The array dlemerts after updation
LA

Sparse Matrix and its roprosentations
A mattx s a two-dimensional data object made of m rows and n columns, thersfore
aving toal m x n values. If most of the elements of the maix have 0 value, then itis
o s i

uso Sparso Wt nstoa ofsmplo mats 7
Storage Thers e lsser nozaro iment b 2er0san s lsser
memory can be used to store ony those elr
<Compuig tme: Computg mecanbe save by logicaly desirin 2t
e Vavorsing any nan oro ko

Exampe:
00304
00570
00000

60,
Reprssntg a spar mai by 3 2D aray leads (o watage of s of memory 33
zoos n e mat or of o s 1 ot o b cases S, end ofsorg e

260 elemerts, we orly store non-zero elements. This means storing non-zero
et i . o, G valo)
Sparse Matrix Represeniations can be done in mary ways folowing are two common
representations
1. Aray representation
2. Linked ist reproseniation

ve

Mothod 1: Using
Hincludo<stdio.h>
int main()

1l Assume 435 sparse matrix
int sparseMatr(4]5] =

int size = 0
for(int1=0; < 4:i++)

for(int =0, < 5j++)
if (sparseMatrxfl] 1= 0)

int compaciMatriq3size].

i Making of new matrix

02/02/2023

02/02/2023

int UNIT 8 Lecture-04

oo <ain STAcK

for(int =0 < Astack is an Absiract Data Type (ADT), commonly used in most programming languages. It is
eprsomandi =) named stack s t befaves ke a reakword stack. for example — a deck of cards or a pie of
(pates,elc.

m‘; > ——

compaciMatr(OlId = &

= 7 2
} —
for it 10; <) A realiworid stack allows operatons ai an end oly. For axamp, wo can placa of romove a
card r gt ot of e lock onty. ke, Stack ADT lows l e cperrs
ot e) e end oy Aty givenme, we can only access the top clement of
~ compaciMati) T oo makes 1 LFO da i LFO sas o Last et Hor, tho
e s paced (o of ad4ed) o 15 acomoed 1 sk aminoboy beeon
ionis cated d PP oparaon
retum 0 Roprosontaton
“Tho folowing diagram depicts a stack and is operatons -
Sl i
T [e[e[T 3]® :
00570 i
—> [[Z[F[Z[5[]2
LRI Vawe [3(2]5[7]2]¢ Last In - First Out
02500 Push Pop
ac! Stack
A stack can bo implemented by means of Ay, Siructure, Pointer, and Linked st Stack can
eiher be a fied size one or it may have a sense of cynamic resizing. Here, we are going 1

imolment sack g s, WA makes ta oed 20 sack mplemeriaton

Siack aperatlons may nvoe intalzing e sack,singf and thn de-itazng I Apart fom
these basic stuffs, a stack i used forthe following two primary operalions —
« push() - Pushing (string) an element on the stack.

+pop() - Removing (accessing) an element fromthe stack. isempty()
When daa s PUSHid oo s Algorthm of sempty()function -
Touse o sk ffciory: e 10 15 chack 1 st o sack s wek. For e ame pupose,
the following functionaity is added o
ekl o e ot sment o h sac, it ramovig
+IsFull) - checkif stack is ul

ISEmpty() - check if stack is empty.
At all tmos, we Maiiain a poier 1 the st PUSHed data on th stack. As this ponar ahiays
ropresers the top of the stack, hence named top. Tho top pointor provides (0p value of the
stack vithout actualy removing .
Fist we shouid learn about procedures to support stack functions ~

bogin procedure isempty.

iftopless than 1
ekse

retu fase
endif

o end procedure
oorit of pesk() functon - Implemertaton of isempty(functon in C. programing language s sighty diferen. We

inalze op at -1, a5 tha indox in array starts ffom 0. So we chack he top is below zerd or -1
o determine i th stack s empty. Here' the cade

Implementation of peek() functon in C programming language —
Example

int peek() { o
retum stack{op); etun false;

istull) PushOperation

Algorithn of isulf) function - “The process of pulfing a new data element onto stack is known as a Push Operation. Push

opmatonimles sares of logs -
p 1 - Checks if the stack is ful

Stop 2 e stck . produses an oorand ot

Stop 3 - I the stack i not ful, ncrements top 1o poit next empty space.

begin procedure isful

iftop equals 1o MAXSIZE
retum e

S Step 4~ i dmars o sk ocaon, Wi 9 g
rotun fase Steo 5 - Retums

endl
end procedure -
Implementation of sfulf) functon n C programming anguage ~
Example

P Ifthe. hnked listis used o implement the stack, then in step 3, we need o allocate space

bool isfull) { an

ilop == MAXSIZE)

ramicaly.
Aot forPUSH Operaton

e A simple algorithm for Push operation can be derived as follows -
Tetum feloe: begin procedure push stack. data
¥ if stack is ful
retum nul A simple algorithm for Pop operation can be derived as follows -
endif begin procedire pop: stack
top+—top+1 if stack is empy
stackfiop] «— data retum nuil
it
end procedure
Implementation of this aigorithm in G, is very easy. See the folowing code - data «— stackltop]
Example top—top-1
void pushint data) { retum data
i(isFul() (
top=top + 1 end procedure
stackftop] = data; Implementation of this aigorithm in C., s as folows -
Jelse (Example
printf("Coud not insert data, Stack s ful) ot popint data)
)

i ilisempty()
data = stackiop],

Pop Operation
Accessing the content whie removing i from the stack, is known s a Pop Operation. In an

top = o
aay implementaton of pop() operaton, the data demert i ot actual femoved, instead top rolum dala;
is docromertod 1o a lowar positn in the stack o point t the next value. But inlinked-st Yol (
implemaniaton, pop() actualy removes data clement and dealocaies memory space. A Pop prin{"Coud ot retieve das, Stack i emply)
peraionm mole e folowrg s -)
Step 1 - Checks i the stack is empty. |
T Stop2 e sck's s, ot amrorans .
= 516p3 - 1o siack i o empty. accesses te data dlement at wich top is pining.
< Slop - Decoases o ko ol ©
-+ Steo 5 - Rotms suco

Pop Operation /’

Suack
Algorthm for Pop Operation

Stack Applications

are prosantod hore. I to many activties
ot 8 compuor s coan Gesre e sert ih .
oression evaluation
2 oo (g paing, fving pth,otasive seaching)
untime environment features.

Expression evaluation
In’particuiar we will consider arithmelic expressions. Understand that there are boolean and
reated

simiarly in a compler.
The sayof of

and then
Am e NP Gomplto oo Trre ara .6t o apparoty maciani prtioms: g

rotet ot 1 2 graph (Tyaing Salesan Prolem), b pacng, st progamin
e o v iir oo e 1 3 sy soon 1 v o (porebta evsons
Sbound) forone ofhose prablems, hen h seLio can b appied 0 a1 probime

Infix, Profix and Postfx Notation

wo
‘operands: a+b orcd. f we wie a+b°c, however, we have o apply precedence fuies o avoid
the ambiguous evaluaton (add frst of muliply first?).

“There's no rea reason o put the operation between the variables or values. They can just

ol recads o ofow e oprands. Yo shoud el e svaiage o rf and poste (e
need forprecedence rules and parentheses are eliminated.

i Prfix Posix
avs “ab abs
avbe “abo avers
(@+b)*(c-d) “+ab-cd ab+cd-*
bb4tac

0-35+1

i Prfocana

i [Fronc [Postic
arb [ran abe

avbic [+a‘be [abor+ |
@ ed “ab-ca [abecar |
bb-dtate bbsac oo savc- |
03501 % |r-407351 0351+ |

Postix Evaluation Algorithm
Assume we have a sting of operands and operators, an informal, by hand process is
Soantre ersson o
Skip values o variables (oper
When an opersto s ot appy he operaono e recedig oo
Replace o s opronts 30 poralor i o codted vae (et symbol re
repiaced with one operand)
Cortine scaming oy 2 vao -1 sl o o oprssion
The e comploy s O
performed or
Amore formal aigorthm:
tacH

whie(input siream i not empty)(
en = getNextToken):
iftoken instanceof operand){

pushitoken)
}elseif (oken insance of operator)
p2 = pop(

ot

)
retum pop();
Demonstration wih 234 +5 -

I ranstormaton to Pos
This process a stack as wel. We have to hold informaton thats expressed inside

reiveses whie scanting o i th cosg T Wa ko fave o holformaionon persons
that are of ower precedence on the stack. The aigorthm

1. Create an emply stack and an emwlyws«mcmvm stinglsiream

2. Scan the infix input sting/stream e o

i ppend i (note the
amglos anove o cpearc roma s oo
4. Wi corot ot ok o anoprtor o ol oprators hat have ol f iher

prcatence andsppon b loth ot s, ph e opratrcrio o sk Tho
rdrof oppigis e
5. 1 the current input token
6. I the current input token . y Dﬂvchaﬂ eptrtors t append hom o o ovput sting
unil a (s popped disc
7. 10 andof et S 13 o, ool oportrsand appond hm o ot

i g dossrt bl arrs i th i, alhough carfl anayss ofparerthoss olack
of parerthesis coukd point o such error detormination.
‘Apply the algorihm 1o the above expressions.

Backtrackin
Backiracking is used in aigorihms in which there are steps along some path (tate) from some.
g ponosomegol

+ Find your

+ Find apath lmmm\epmmmawsvh (oadmap) o another point.

Playa v b made (hacers. cese)
Inlofthose cases o are ol oo made among a rmber ofopions. Wo need
mber s deciion oS in case we wAnlneed o come_back and Iy the

%
g5:7
:

ataratie.
‘Consider the maze. At a point where a choice is made, we may discover that the choice leads o
a dead-end. We want 1o relrace back to.that decision point and then try the other (nex)

alemative.
‘Again, stacks can be used as part of the soluion. Recursion is another, typically more favored
Solution, which s actually implemented by a stack.

Management
‘Any modern computer environment uses stack as the primary memory management model for
a running program. Whether its naiive cods (486, Sun, VAX) or JVM, a stack is at the conter of
the runime environment for Java, C++, Ada, FORTRAN, etc.

The dscussion of JVM in the fex is consistert with NT. Solaris, VMS, Urix runtime
environments.

has its own the
typicallayout as shown below.

Uneed _
Mawery | el " Lol vars
Patameters
e |
5 ey

Call Stack

05/ TVM

Call and roturn process.
Ihen & methodfunction is called
1 Anzclwalmn ool rstc 1 o degars ot anbar s iz it oce

s
2 oo Poinr va\ue i savedin e speilocatonsserved i
3 alue s saved in
e e Poiter s row et oo now nass 1 o e call stack pri o th creaion
AR)
The is setfo the method being
s
6 ihe caling parameters inlo the Parameer region
7 utosos et vrcotn e ol v vogon
Wi the local variables and ly found by adding a
Conoant vssocaict i s varempamte 15 e Bese Pontr

a retums.
1 Getth program outr o e acivatonecd and placo wats i e PO
2. Get the base poinar value from the AR and replace what’ in the B

3. Popthe AR entirely from th siack.

Lecture-06
aueue

structure, o Scke ke stcks,
o o ot oo sy st s et i o)t o o
Femovs ate (dsqvoe). Gueus lofows. Fratn FraLs methodaogyLe. i dote o sored
first il be accessed frt.

‘A real-workd example of queve can be a single-ne one-way road, whers the veric eniers first,
8 fat. Mo eskaork e can b seen s s s th et whdows and bus-

fr——
As we now understand that in queve, we access both ends for diferent reasans. The folowing
ocram g bolow s 10 sl s epreseneion 4 G SRS -

v »
[s |[o | ome | Dws | e || oam | ow
L - >

Aainstace, 2 qusue an ko e implementad sy Arays, Lkt Poitrsand
Stnctures. For using armay.

Queus aperations may involve inifaizing or dafiring the queve, uizing i, and then completely

erasing It from the memory. Here we shal ty to understand the basic operations associated

with queves ~

+ enqueue() - add (store) an item 1o the queve.

« dequeue) - remove (access) an item from the quet

Fow o Aclars ar reired s maks te shove mensoned queus operaion sfcer, Tese
poek() - Gels the slement a the font o the queus withaut removing

my mpty.
In Quets, we aways Goqueue (or access) data, Pt by ront poiner and whle eacusig (or
Storing) data n the queue w take help of rear poiter.

Lots fistearn about supportive funciions ofa queus -

peck()

“This function helps. The functions
ol

Aigorithm
begin procedure peek

retum quecefron]
end procedure
Implementation of pesk() functon in C programming language
Example

int peek() {
retum quecefon]
istull)
5 s g s ciorsonary o rlenert e, e st chck for e piir ©
‘o determine is full In case we mairtain the queve in a
Crear e te. o o il o Ao o1 810 oo -
rithm

begin procedure isful

if rear equals toMAXSIZE.
retum tre

ek
retu fase

endif

end procedurs

Implementation of sfull) function n C programming language ~

Example

boolistul) {
ifrear == MAXSIZE - 1)

retu trve;

ek
retum false;
)

isompty()

Algorithm of isempty()function
Aigorithm

begin procedure isemply.

i fronts less than MIN OR front s greater than ear
retum troe

02/02/2023

s
otun faise
endif
ond procedure
Ifthe value of front s less than MIN or 0, i tas that the queue is not yet inalzed, hence
empty.
Here's the C programming code ~
Examplo

boolisempy()
i(front< 0 | front > rear)
retu trve;

eke
retu false;

Enqueus Operation

Queues maintain . front and rear. Therefore,

difcul to implement than that of stacks.

The folowng sieps shoud be taen (0 cuete (rser)dta o @ e =
Stop 1~ Crock e cuese sl

. swp2 5 o 1t prchie averow sor and e
L S i b okl o e pate 1o it h nt ampy Space
+ Stop 4 - Add data slement to the queue location, where the rear is pointing

- StopSroum sucoss

~— . [

Queue Enqueue
Somatines, we o check 0380 ¥ e i ALz ol e any atrsssen
siuat

s RT—

procedure enqueve(data)

if queve is ul
retum overflow

endif

roar « rear + 1
queueirear] - data
retum trie

end procedure
Implementation of enqueue() in C programming language ~
xample.

int engueue(int data)

ifsful))
retum 0;

rear = rear + 1
queuerear] = data,

‘ond procedure.

Aocassg da o e e 13 process of o s < accus the doa whar Tt
o

poining and remove the dala afler access. The folowing steps are

Stop 1 - Checkif the queus is empty
Ston 2 i e 5oty o oo o and

Stop 3 1w ueve s ro oty acces h daia where frot s poiig
Step 4 ncromentfon portr 1 o 6 ot avi deta aemen
Stan & - Ratim aivrase

1
1 4

/o Doqueve

Aot ordoaseo opeeon
procedure dequeue.

if queve is empty
otum underflow
endif

i
(e
Emats

end procedure
Implementation of dequeue() in C programming language -
Example
int dequeve(
iisempty()
retun 0;

i st - quusont
front= front +

retum data:

UNIT i Lecture-07

LNk

€D LIS
i o . soqerce ofdaasrcios, whicharo comectad fogather via chi
Linked List s 2 sequence oflnks which contains ftems. Each ink cortains a connectior
1o aniher ok Liked ¥t 3 1 second mosteed s sctrs afer amey. Folowing
are the important terms o understand the concept o Linked List

+ Link - Each Ik ofa Irked st can store a data caled an lemer

+ Next- Eachlink of a inked list contains a ik fo the nex rk called Nex!
~LinkedList - A Linked Listcortains the connection irk to the firtInk called First
Linked ListRopresentation

Linked fist can be visualized as a chain of nodes, where every node paints o the next
node.

visa Next Noxt N
oatoms Dwaters Onatoms

et above staton, ollwin r h imporepiis 0 b coridr.
et Lot coae ik st sk o
L o ink cartos ot o) an Ik il rt.
L ERnink oI vin e ot I i s o
e e
pesct ke
o e s st s

Sl i s s vt

Uik Lit s ca o it forard and b

ettt T O EEE T s

s e o st s

Basc
meww ot b opatons i by 1 Bt

~ Adds an lement at the beginning of the list
T Daton ~Dastos oot v seghers ol .
+ Display - Displays the completeist.
+ Search - Searches an element using the given key.
+ Deloto - Deletes an element using the given key.
nsertion Operation
‘Adding a new node in inked lst i @ more than one stap activit. We shal learn this with
diagrams here, First, create a node using the same structure and find the location where
ithas to be inserted.

= poamems " omanens

Noxt

Imagine thal we are insering a node B (NewNode), between A (LeftNode)
20 C (RighNode) Then b0 8. 10 G -

NewNode next -> RightNode:

It should ook ke tis —

M omanens M % ouanems "

Now, the next node at the left should paint [0 the new nade.
LeftNode.next -> NewNode;

Dataters Datatams

“This il pu the new node in the midde of the two. The new listshoud ook like this—

" ouanems "% ouaams " Daatams "

‘Similar steps should be taken if the node s being inserted at the beginring of the st
Whiks inserting it at the end, the secand last node of the fist shauld poirt fo the new
ihe new node wil point o NULL.

eletion than one step process. We shall leam with pictorial
fevesaraion. Fis, ocao o tagor rods 1o e removed: by g souenng
aigoritms.

s Nt Nox Nt
“ . owatens owarens ", outatems

The lft (previous) node of the target node now shouid poit o the next node of the
target node —

LeftNode.next —> TargetNode next;

e o crom N o=

This will emove the ik that was pointing tothe target node. Now, using the following
. we wil remove wha the target node is pointng at.
TargetNode.next -> NULL;

= P
s 5 T 2T o

We need to use the delled node. We can keep that in memory otherwise we can
o pe

", vumrems ", puarems |

Operation
“This operation’s a thorough one. We need to make the Last node o be poirted by the
e and reverse the whole inked It

=) [2] o [

02/02/2023

Firs, we traverse fothe end of the ist. It shoud be painting to NULL. Now, we shal
make it point o s previous node

omatems "L, paatems | "

have to make sure that the last node is not the lost node. So well have some temp
o wHich pers e e hos s paning 1 b s ndo. Now we sl make
left side nodes point o ther pravious nodes one by

—

Excop the noc (st node) poited b o head node, lloces showd point ot
predecessor, making them thir new successor. The irst nod wil point to NULL.

We'l make the head node point {0 the new fist node by using the tomp node.

Datatars | N Duatems "¢ "

The finked lst is nowreversed.
Program:

Hinclude <sidio >

include <sidbool

struct node |
int data;

intkey
sinct node “next.

struct node “head = NULL;
struct node “current

ldisplay the st

void printList()
struct node pir = head,
(e ")

st rom e vegrring
whie 1)(
Dwvm‘ (i %a) pir>keypir->data);
pr=

prnt('T');

linsert ik at the firstocation
void inserFirs(int ey, int data)
fastosink
struct node

nk>key = ey,
tnk>data = data

okt ook troce
fnkc>ne

lpoint frst o new irst node:
=i

ldolete firsttom
Siruct node” deleteFirst() {

s rfororce o stk
node “tempLink = head;

lmark next to fist ik as first
head = head->next

Iretum the deleted ik

struot node) mallocisizeof(struct node));

rotum tompLink.

s list empty
ol sEmpty()

retum head == NULL
)

intlengih() {
int length =
O s

forfcurrent = head; current 1= NULL; current
o

curmentonext) |
ngih-+

retum lengih:
)

find a ik with given key
iruct node” find(int key)
istartfrom the fistirk
iruct node” current = head;
it tistis empty
i(noad == NULL)
etum NULL,

whie(curent>key

inavigate through st
ey) {

I its last rode
iflcutent >next
NULL;
Yoo (
Jigo to next ik
current = curtert>next:
}

Jif data found, retum the curtent Link
retum current;

ldslete a ik with given key

siruct node” delatalin key) {

istartfrom the firstirk

struct node curent = head;

struct node previous = NULL;

st oy

ihez
e WL

)

L)

lnavigate through st
whie(curent >key 1= key)

it i e rods
next == NULL) {

Tsorerference to uren ik
previous = curent
imove to next frk
current = current>next:
o a it o
icurrent
Jichange ws« (c pmmto next ik

e (
e h—imerir
previous->nex = current->next
retum currert;

voidsort() |

int1]k tompKey, tempData;
struct node “curret;

sinct node ‘next

for(i=0:1<siza-1;ive. k) {
current = head,
next = head->next

<k

if curent>data > next>data)
fempData = curent.>data
curent->data = next>data,
next>data = tempDat:

tompkey = curent>key;
curent >key = next-ey;
next:>key = tempkKey.

current = curent->next;
Pext = next>next
}

)
)

e Nl
node” prev = NULL

A Bt
sinct node” next

vl (et = NULL)

2 = curent >next

ot o
e
rent =next

“head_ref = prov;

insertFirst 56
print(‘Origial List:

lpint st
pintLst()

whie(isEmpiy() (
do “tomp = deletoFirst)
prinf(nDeleted vale:
Pr("(%d.%d) " temp->key tomp->data)

prnt("nList afer delting al ftoms:)

insertFirst(6.56).

it ("rRestored List:).
prntist()
prnd (")

struct node *foundlink =

indd);

iffoundLink 1= NULL)
printf(Element found:°)
(%0, %d) *foundLink->key foundlink->data)
print("

02/02/2023

Yok {
print("Element not found.”)
}

dole
ot w.wemwm anitem: *)
i

il
Touedlink = ey

ifoundLink 1= N

i Samerd foun

L S S —
ot

)
Jelse {

printf(Element not found.)
)

prnt (v
son(;

print("Listafter sorting the data: ")
printList();

reversa(8head)
printf(nList aftr reversing the data:);
printList();

1fwe compie and run the above program, it wil produce the folowing rosul -
Oupu.

Origial
11630) (sam (e @20 (1101

)
st after delting al tems:

Restored List
1(656) (5,40) (4.1) (330) (2:20) (110)]

I

16 55)&51101 u i3 630110
Element ol

Listafr o

10110, 0201 550 340) (6501
List after reversing the data:

1(6.56) (5.40) (330) 2:20) (1.10)]

Lecture:08
Polynomial List
in variable x which et
D) s b . Kot calogor of el ambars 1 o g

integer, which is caled e degree of polynomi
Animpoten herecarsies ofpobomialis ot exch e i th popromiel
o parts:

e s th exparert
Example
101+ 26x, oo 10 and 26 are coeficents and 2, 1 ae s exponential vale.
Paints o keep in Mind whi working with Polyromiats:

‘exponent i stored within the

exoreet e
ddiora erms aving el exporrd s possl ore

“The sorage slocatn ot sech e tha pobomial mus be dore i
2scanding and descending orde of e exponent

-
Py > Coefficient

arex+10x + 6
CETH L e

-
Representation of Polynomial
ropresented These are;

o Byveseatian
e wse of Linked Li

annmal\nn o Pamormils using

Some”Siaion where o nood 1o valale many_poyromial
caressons anpatom b e oporaions e saaion a1 tcton it
those numbers. For tis you will have 10 get a way to represent those polynomials. The
simple way is {0 represent a polyromial with degree f and store the coefficent of n+1
tes of the polynomial n aray. So every armay element willconsists of two values:

+ " Cosffiientand

Represetaton of Pohmonial sing Lk L
ol ca b (oot of 5 rdeed 9 ot o 200 loms. Each o 200
emm 1 e v ich Fols o o f o

+ The exponent part

. The coeficentpart
Addingtwo polynomials using Linked List

Gien ool mambrsrersentd b ke . Wi o frion thatacd
these sts means add the coefficients who have same variabl

Exampie:
put:

st number = 5x°2 + x'1 + 2600

20 umber = 551 + 5x%0
Output

502+ 91 + 700

put

15t number = 533 + 432 + 2540

20 umber = 541 + 5x°0
Output:

503+ 4602+ 50 + Tx00.

H-“.. -“ [] -_7n. o
Bﬂ]%mm

Resitant st

oo

PRV M

st Node
«
intcoeft;
int pow:

struct Node “next;

void create_nodefint x. int, struct Node **temp)

«

struct Node r °2;
2="temp:
itz

«

=(struct Node*mallc{sizeofsruct Node));

L)

r>coe

r>pon

Hemp= .

(struet Node maloc(sizeof sruct Node))
F=rsnex:

Fonext = NULL;

rocoelf=x;

r>pon

r>next = (struct Node"Jmaloc(sizeof(sirut Node));
r=roned:

F>next = NULL;

)
void polyadd(stnuct Node “poly1, sirct Nods *poly2, struct Node *poly)
«
whie(poly1->next &8 poly2>next)
«
iffpoly1->pow> poly2=>pow)
«
poly>poy

poly1->pow;
poly->costt = ply->coeff
poly1 = poly->next.

)

e fpoly1->pow < poy2->pow)

‘
poly->por
poly->cosff = poly2->coeff

oly2->pow;

poly2 = poly2->next;

poly>pon

oly1->pow;

poly->coeff = poly1->coef +poly2->cosfl

02/02/2023

poly1 =polyt->next;
poly2 = poly2->next;

)

poly->next = (struct Node *Jmaloc(sizeof(strct Node)):

poly = poly->next:

poly->next = NULL;

)
whie(poly1->next || poly2->next)
«
ipoly1->nex)
«
poly=>pow = poly->pow;
poly->coef = polyt->coeff;
polyt = poly1->nex;
)
ipoly2->nex)
‘
Poly->pow = poly2->pow:.
poly=>coef = poly2>coeff;
poly2 = poly2-next;
)

poly->next = (struct Node *Jmaloc(sizeof(struct Node))
poly = poly->next

poly->next = NULL;

)
void showstruct Node “node)
«
whie(node->next 1= NULL)
«

pAn ("%, rod->coeff noce->pow);
node = node-next;
ifroda->naxt 1= NULL)

P+

)
in maing)
«
struct Nod "poly1 = NULL, “poly2 = NULL, “poly = NULL;
1 Croate frst st of 5x'2 + 1+ 260
create_ode(s 2.4p01)
create_node(é,1.8poly)
create_node(2.0.8poy1)
1/ Create second st of 1 + 5140
croato_node(5 1 8poh2).
create_node(s0 82}
ittt Number:)
showlpoly);
prn("n2nd Number:).
show(pol2);

poly = (struct Node "Jmalocsizeof(strut Node))
11 Function add two polynomial numbers.
polyadd(poly1. poly2. poy):

1 Display resutant List
pint("\nAdded polyromiat

show(poly):
rotum 0,

)

Output

st Number: 512 + 4x1 + 200

20 Number: 5171+ 51°0

‘Added polynomia: 512 + X\ + 7x°0

Lecture:09

Dously Linkad Lt
oy Linked List (DL poirter, ypicaly called
ogetber it res poer s dat wich s ers vl e 8

Following Is representation of a DL node in C anguage.
1 Node of a doubly rked fist *
st Node

S o rost I Ptertoe roden DL
struct Node* prev; Pirter to previous node n DL

Folowing are. cvrageudandiniage of oy ka1t over bk B
tages over singly linked it
D ADLs an b rovrandinbothoerd and bckuar drecion.

given.
3)We can quickly insert a new node beforea givennode.

In singl linked lst, to delee a node. poinler o the previous node s needed. To get
ihis previous node, sometimes the lst i raversed. In DLL. we can ge the previous

tages ovr s oked ot
Deven rodbalDLL s space foron e pore. s poseie o
implment BLL wih sng poier e
Ak oprabos o an s polir rovius o b maianed. For esale,

insertion, we need to modify previous pointers together with nex ponters. For
xample in following functions forinsertions at diffrent positions, we need 1 or 2 extra
steps to set pravious poirter.

Insertion

Anode can be added in four ways

1) At front ofthe DLL.

4) Before given node.
)20z atine ot o5 stpsprocess

node is ahvays added before the head of the given Linked List. And newly
2060 o omen e o e o1 DLL Foraxamp 1150 Gt Lk Lt 15

10152025 and we add an tem 5 at the fron, then the Linked List becomes 510152025
t the front of receive.

a pointer o the head poirter, because push must changs the heed pointer 0. point (0 the
new node.

2) Add a nodo after a given node. (A 7 stops process)
Pode, and the new afterthe.

given node,

3) Add a node at the end: 7 steps process)

o is alvays added afer the last node of the given Linked List. For example
ifhe given DLL is 510162025 and we add an tem 30 at the end, then the DLL becomes
51015202530, Since Linked List is typically represerted by the head of i, we hat
raverse the fst i end and then change the next ofast node to new node.

4) Add a nods before a given node:
Sto

Let he poirter o tis given nade be next_node and the data of the new node o be.
ew_data

L. Gk ifthe ot rode s NULL or . £ NULL et fom o frcion
because any new nade can not be added before a NUL
et memon o now Tode o be e .o

node->pr
" e Prvwous ovta of e ev_todo a5 th now_node, 10100 pew

séx lhe nen\ pointer of this new_node as the next_node, new_node->next =

.\'.G'!ﬂ.b““

e prevous o of he . rode s XNULL st h e ot of
his previous node as new node, fe>orev:

Set new,_node.>data = new_data
 Setth rovouspoor of s e o 31 prvus e of e e o,

02/02/2023

Circular Linked List

icl. There is
170 NULL ot the enc. A crcuar inked fst can bo o sy crcutar inked fs or doubly
rcar ke st

Advantages of Crcular Linked Lists:

1)Any node can be a starting point. We can traverse the whole st by starting from any.

point.We Just need t0 stop when the firstvisited node is visied again.

2)Useful for implementation of queue. Uniike this implementation, we dorit

maintain wo pointers for front and rear if we use circular fnked ist, We can maintain @

pointerto the lat nserted nodo and frontcan always be obiained as nex! of ast.

3)Citcuar fist aro useful in applcations 10 repeatedy go around the ist. For example,
en mutilo applcal o

put he running appications on a st and then 16 cycle through them. giving each of them
a sice of me o execut, and then making the wait whie the CPU s given 0. another
‘appication. tis converient for the operating system o use a circar ist o that when it
reaches the end of the st it can cyck around 1o the front ofthe s

#)Cireuar Doubly Linked Lists are used for implemontation of advanced data stctures.
ke Fibonacei H

Insertion in an empty List

Initialy when the lis is empty, fast ponter wil be NULL.
Aftr inserting a node T,

Aftrinserton, T i the last node so pointer fastpoirs to node . And Node T i first
and lst node, so T s pointing toise
Function o insert node in an emy L

oot o T o e s it dota

11 This function s only foremply st
i (ast 1= NULL

1)

[
otum st

i Creating a pode dynamicaly.
siruct Node st
(struct Node*Jmaloc(sizeof(struct Node));

1 Assigring the data.
lost > data = data;

11 Note: st was empty, We ik single node
ot

st
rotum st

Run onIDE

Insertion at the beginning of the st

To nsert a node at the begiring of the s, folow hese step:

1.Create a node, say

2 Make T last > next.
3ast > next =T.

After inserton,

Function t insert node in the beginning of the List,
struct Node “addBeginistruct Node “last, int data)

if (ast == NULL)
et ATty)

i Creating a pode dynamicaly.
st Node “temy
(strut Node *maloc(sizeof(struct Node)

1A o dota

dala = dat
1 Adjusting the frks
tomp > next = last > noxt;
last > next = tomp;

rotum ast;

)
Insertion at the end of the list
Torrer e o o o of e . oo ese siep

-

Last

Node T

Aftrinserton.

Node T

Function to insert node inthe end of the List,
struct Node “addEnd(siruct Node “last, it data)

i st
e ATt e

i Creating a node dyramicaly.

siruct Node “temy
st Noge maloc(szeof(siuct Node))

1 Assigring the data.
p-> dala = data;

1 Adjusting the frks
tomp > next = last > nex;
> e
tom

rotum ast;
)

Insertion In between the nodes.

Tolnsert a node atthe end of the s, follow these step:
1. Create a node, say T

2. Search the node afer which T need to be inser, say that nade be P.
3 Make T-> next = P > next;

4P nex =T,
‘Suppose 12 need o be nsert after node having value 10,

Last
Node T

3

I

Aftr searching and insertion,

Last

n o insert node in the end of the List,
ot oo aqatersinst Node s ot, ot tom)

if (st ==NULL)
etum NULL:
s Nodo o, 5

 Soroing o fom.
do

«
if (p->data == ftem)
= (struct Node *maloc(sizeof struct Nodel);
!‘Asg\gmng(hed
tomp > dala = data;
u s o e

w Addmg nemy Siocate o atorp,

p=p->nex:
) while (p 1= ast > nex);

cout << itom <" not present in the st <<erd;
rotum last;
)

Module:2:
Lecture-t
Memory Alocation-
Whenever a new node s created, memory is alocated by the system. This memory is
taken from st of those memory locations which are free ©e. not alocated. This st is
called AVAIL List. Simiarly, whenever a node s deleted, the deleted space becomes
rousable and is added (o the st of unused space ie. to AVAIL List This unused space
can be used in fuure formemory alocation.
Memory alocation s of two types-
1. StaticMemory Alocation
2. Dynamic Memory Allocation

1. Static Momory Allocation:
When memory is allocated during compiation time, it is called ‘Static Memory
Alocation, This memory s fixed and cannot be increased or decreased after
allocation. If more memory s alocated than requirement, then memory s wasted. If
less memory s alocated than requirement, then program will ot run successfull.
So exact memory requirements must be known in advance.

2. Dynamic Memory Allocation:

When memory is allocated during runlexecuion time, it is called ‘Dynamic Memory
Alocation, This memory is not fixed an s allocated according 1o our requirements.
Thus in it there is o wastage of memory. So there is o need o know exact memory
requirements in advance,

Garbge Colector
Ihenever a node is deleted, some memory space becomes rousable. This memory.

space sfoui be available or fulure use. One way 1o do this is to immediately nsert the

ree space into availabilty st But this mathod may be time consuming for the operating
systam. So another method is used which is called ‘Garbage Collecion. This mathod is
described below: In this method the O collects the deleted space tim fo time oo the
avallabiy fst. This process happens in two steps. In frt step, the OS goes through all
the fsts and tags all those cels which are currenty being used. In the second step, the

02/02/2023

08 goes through all the lsts again and collcts uniagged space and adds tis collcted
space to avalabilty list. The garbage collecion may occur when small amount of free
space s eft n the system or no froe space s left n the system or when CPU s idle and
has time to do the garbage colection.

Compaction

One preferable solion to garbage collection is compaction. The process of moving all
marked nodes 1o one end of memory and all available memory 1o other end is called

Infix to Postfix Conversion

Hinclude<stdio h>
char stack(20]

inttop=-1;
void pushichar)

stack{++1op] =
)

char pop()

iffop ==-1)
rotun -1;
ese
etun stack{op-];

int prioiy(char x)

o= om:
whie('s 1=10)

iffsalnum(e))
print ("%

ek

pushi'e)
elseie =
{

o, Agorth which cated
2 whie((x = pop() 1='()

bt prt (e)

w

a5 ko

i

a7 whie(priorty(stack(iopl) >= priority("e)
P Pt (%" popd)i

r pushiel;

0)

51 o

52

53 whie(op I=-1)

5

55 puniC%c

s)

s)

ouTRUT:

Enler the expression : asb'c
abot+

Enerthe expression - (a+b)'c+(d-a)
abvcdar

Evaluate POSTFIX Expression Using Stack

1
2
3

Hinclude<stdio.b>
int stack(20];
inttop =
Void pushint x)
«
stack++top] = x;

int popl)
«

etum stack{op-1;

int main()

«
char exp(20];
chare;
int it 273,
prin(‘Enter the expression)
scanf("%s" xp);
e=ep;
whie('e 120)
¢

iisdigiCe))

2 um = -48;

2 pushipum):

@ swich('e)
u ¢

s case s

a7 =t 2

£ break

w0 case

a2 =2
) break

5 case

ar W=

) break

caser

w=n2/nt

break;

)
pushina);

prin("iThe resul of expression %s = %cin’ exp,pop()):

rotun 0

Output:

Ener the expression : 245+"

The resut of expression 245+ = 18

02/02/2023

10

Lecture13
Binary Tre

A binary ree consists of a fine sel of nodes that is either emply. or consists of one
Speciall designated node called the roof of the binary (ree, and the elemeris of tvo
aisointbinary trees calld the Jeft subtroe and right subiroe of the root.

Note tht the definton above is recursive: we have defined a binary ree n ferms

binary trees. This s appropriale since recursion s an innale characterstc of tree
strctures.

Diagram 1: A binary tree

Binary Tree Terminology

the type of family tre called a ineal char).
+ Each ootis said 1o be the parent of the roots of s sublrees.
+ Two nodes with the same parent are said to be sibings; they aro the chiren of
ther parert.

The rootnode has no parert.
+ A great deal of ree processing takes advantage of the relationship between a
parent and its chidren, and we commonly say a diected edge (or simply an
‘adge) extends from a parent to s chidren. Thus edges connect a root with
the roots of each subtree. An undirected odge extends in both diections between
a parent and a chil.

+ Grandparent and grandchild relations can be defined in a similar manner; we.
could also extend this teminology further i we wished (designaling nodes as
cousins, as an undle or aun, elc.)

Other Tree Terms

+ The number of sublrees of a nade is calld the degree of the node. In a binary.
ree, al nodes have degree 0,1, or 2.

+ Anode of degree zoro i caled a terminal node orfeaf node.

+ Anondea node s often caled a branch node.

+ The degree of a ree is the maimum degree of a node in the e, A binary ree s
degree 2.

« Adirected path from node o s defined as a sequence of nodes i, s,

i< k. An undiected path is &

simiar sequence of urdirected edges. The length of this path is the number of

‘edges on the path, namely k - 1 (Le., the number of nodes — 1). There is a path

of length zero from every node to itsof. Notice that in a binary treo thore s,

xactly one path from the root o each node.

.k such that nis the parent of ni+1 for 1

“The fevel or depth o a node ilh respect to a ree s defined recursivey: the level
of the root s zero; and the level of any other nod is one higher than that of s
parent. O to put it another way, the level or depih of a node s the ength of the.
unique path from the rootto n.

 The height of nis the length of the forgest path from nto a leaf. Thus al leaves.
in he tree are at heigh 0.

+ The height of a treeis equal to the height of the root. The depth of a tree is equal
o the el or depth of the despest lea this is always equal o the height of the
ree.

+ It thore s a directed path from 110 s, then nyis an ancestor of nand nzis a

descendant of .

Special Forms of Binary Trees

There are a few special forms of binary tree worth mentoring,

If every nor-eaf node in a binary ree has nonemply left and right subirees, the tree is
tormed a stictly binary tree. O, to put it another way, all o the nodes in a sircty binary
e are of degree zero or two, never degres one. A sticty binary tree with N leaves
ahuays contains 2N - 1 nodes.

‘Some texts cal this a“fuf”binary tree.

A compiete binary iree of depth d is the stricty binary tree all of whose leaves are at
level .

“The total umber of nodes n a complete binary tree of depth d equals 29— 1. Since al
leaves in such a tree are at level d, the tree contains 2 leaves ard, therefore, 29~ 1
intemal nodes.

Diagram 2: A complete binary tree

E)

o> o

Abinary tree of depth d'is an almost complete binary re I:
+ Each leaf inthe tree is eiher atlevel d or atlevel d— 1
 Forany node nuin the ree with a ight descendant atlevel d, al the left
descendants of nsthat are leaves are also atlovel o
Diagram 3: An almost complete binary treo

o
ol o
/
® ®®

An almost complete stricty binary tree with N leaves has 2N - 1 nodes (as does any
other strcty binary ree). An amost complts binary tree with N leaves that s not stricty
binary has 2NV nodes. There are two distnct aimost compets binary trees. with N leaves,
‘ono of which is strcty binary and one of which is not.

There s orly a single almost compele binary tree with N nodes. This tree is strictly
binary if and only if Nis odd.

Ropresonting Binary Trees in Memory

Array Roprosontation

Fora complets o aimost complete binary res, storing the binarytree as an array may

bea good choice.

One way to do tis s o store the oot of the ree i the ist element of the array Then,

for each node in the tree that i stored at subscipt , the node'slft chil can be stored
and the right chikd can For example, the

almost complete binary tree shown in Diagram 2 can be stored i an array ke 5o,

However, if tis schems is used to store a binary tree that s not complete oramost
‘complets, we can end up with a great deal of wasted space in the aray.

For example, the following binary tree

R = A N O I I)

[afef=] Tu] fol [[v]

Linked Representation

1fa binary ree s not compiete or amost complete, a better choice fortoring it 10 use.
a inked representation simiar to the fnked ls sructures covered sarier in the.
samester

Each ree node has two pointers (usualy named ket and right). The tree class has
pointer (labeled rootin the

Any pointe i the res structure that doesnot point 1o a node wil normaly cortain the
value NULL. A frked tree with N nodes will aways cantain N + 1l inks.

02/02/2023

11

Lecture:5
Tree Traversal:
Traversal is a process o visi al the nodes of a tree and may print thei values t0o.
Bocause, al nodes are comnected via edges (inks) we always start from the oot
(head) node. That is, we cannot randomly access a node in a tree. There aro three
ways which we s to raverse a tree -
+ Inorder Traversal
+ Pre-order Traversal
+ Postorder Traversal
‘Generaly, we traverse a ree to search or ocate a given flam or kay in the tree orto
pint all the values it contais.
InorderTraversal
In tis raversal method, the eftsublree i visited firs, then the rootand lter the right
Subiree. We should always remember that every node may represent a sublre el
1f a binary tree s traversed In-order, the ouput il produce sorted key values in an
‘ascending order.
Root

]
& 4
AR

1@ & 1O &

Lot Subree Fight Subtres
We star from A. and following in-order raversal, we move [0 s eft sublroe B. B is
also traversed in-order. The process goes on uni all the nodes are visited. The output
of norder raversal of this tree will be —
D-B-E-A-F-C-G

Algorthm

Unti all nodes are traversed -
Stop 1 - Recursively raverse left subiree.
Step 2 - Visi root node.

Step 3 - Recursively raverse right subiree.

Pro-orderTraversal
In tis raversal method, the root node is isited first, then the lft subtroe and finaly
the right subtree.

Root

Lott Subtree Raht Subiree
We start from A. and folowing pre-order traversal, we first visit A sl and then move
1o ts eft subiree B. B is also Wraversed pre-order. The process goes on uni al the.
nodes are visited. The oulput of pre-order raversal of this tree willbe —

A~B-D-E—~C—F-G
Algorthm

Unti all nodes are traversed —
Step 1 - Visiroot node.

Step 2 - Recursively raverse e subiree.
Step 3 - Recursively raverse right subiree.

Postorder Traversal
In tis raversal method, the foot node is visitedlst, hence the name. First we traverse

the left subiree, then the right subtree and finaly the root node.

Root

NS

Loft Subtree Rignt Subtres
We start from A, and following Post order raversal, we first visit the eft subiree B. B is
also raversed post.order. The process goes on unt all the nodes are visted. The
output of post-order traversal of this tree wil be -
DE-B-F-G-C—A
Algorthm
Unti all nodes are traversed -
Step 1 - Recursively raverse left subiree.

Step 2 - Recursively raverse right subiree.
Step 3 - Visiroot node.

Lecture-16.
AVLTrees
ANAVL treels another belanced binary search tee. Named afler ther
invertrs, Adelson-Velski and Landis, they were the firs ynamically bolanced tees to
be proposed. Lk rec-black ree, hey are ot erfcty baanced, bu pais of sub-
trees differ in height by at most 1, maintaining an Oflogn) search time. Addition and
deletion operatons iso take Offogn) time.
Defiition of an AVL tree
An AVL e is a binary search tree whch has the foloving
properties
1.The subrees of every node difern eight by at mostone.

2. Every subree s an AVL tree
—— oW
foran AVL ree: heleit | | l
ad gn subrees

iferby at most 1 in
neight
You need o be caefuwith is dfiton: permits some apparenty urbaanced rees!
For example, here are some trees:

Tree AVL troe?

Examination shows that
ach eft sub-tree has a
height 1 greater

than each right sub-
ree.

No
Sub-ree with root8 has
height 4 and sub-ree.
with root 18 has height
2

Tnsertion
As with the red-black tree, inserton is somewhat complex and involves a number of
cases. Implementations of AVL tree insertion may be found in many textbooks: they rely
on adding an exra aiibute, the balance factor to each node. This factor indcales
whether the tree is eft-heavy (the height of he lef sub-iree is 1 greater than the right
sub-troe), balanced (both sub-trees are the same height) or right-heauy{the height of the
right subiree is 1 greater than the left sub-tee), f the balance would be destroyed by
aninsertion a otation s performedto correct the balance.

Anew ftem has been
added to the ot sublree.
of node 1, causing its
height 1o become 2
greater than 25 right sub-
ree (shown in green). A
ight otation is performed
1o correct the imbalance.

Lecture17.
Betroo
In B+-tree, each node stores up 1o d references (o chicren and up 1o d = 1 keys. Each
reference is considered "betweerr two of the node's keys; it eferences the root of a
subtree forwhich all vaues are between these two keys.

Here is a fairly smal tree using 4 as our vaue for d.

A B-tre0 requires that each leaf be the same distance from the oot as in this picture,

where searching for any of the 11 values (al fsted on the botiom level) will involve:
loading three nodes fromhe disk (i root block, a second-evel block, and a lea).

In pracice, o wil be larger — as large, infact, as it akes 1o fil a disk block. Suppose a
Block is 4KE, our keys are 4-byle integers, and each reference is a G-byte fil offset

Then we'd choose d 0 be the largest value so that 4 (d = 1) + 6 d < 4096; soling this
inequaty or d, we end up with d < 410, S0 We'd use 410 for . As you can see, d can be
targe.

ABrtree mairtains the following invarias:

+ Every node has one more eferences than i has keys.

+ Alleaves are at the same distance fromthe raot.

+ For every nonea node A with k being the number of keys in N: all keys i the
first chid's subtree are less than s irstkey; and al keys in the fh child's
Sublree (2 <1< K)are between the (1~ 1)th key of n and the it key of .

+ The root has at least two chikren.

+ Every nonear, nonoot node has at least loor(d / 2) chidren

02/02/2023

12

+ Each leaf cortains atleast floor(d 2) keys.

+ Every ey fromthe table appears i a leaf, in left-o-1ight sorted order,

I our examples, wel cortinue to use 4 for d, Looking at our invarian, tis requires
that cach leaf have atleast two keys, and each intomal node o have atleast two
chicren (and thus at least ore key).

2. Inserton algorithm

Descend to the leaf where the key fits.

1. 1fhe nods has an emply space, insert the keyireference pair ino the node.

2. I the node is aready ful splt t inlo two nodes, distributing the keys evenly
between the two nodes. f the node is a leaf, take a copy of the minimum value in
the second of these two nodes and repeat tis inserion aigorithm to insert it nto
the parent node. If the nodo is a non-ear, excludo the middle value dung the.
Spit and repeat this insorion algorthm 10 insert this excluded valus ino the.
parent node.

Inita:

Insert 13:

Insert 15:

Insert 10

Insert 11

Insert 12

T e e s e

3. Delotion algorthm

Descend to the leaf where the key exiss
1. Remove the required key and associated rference ffomthe node.
2. I the node st has enough keys and references to satsfy the invariants, stop.

3. I the node has too few keys to satisfy the invariants, but its next oldest or next
Youngest sibling at the same level has more than necessary, distibuis the keys
between this node and the neighbor. Repair the keys in the level above 1o
represant that these nodes now have a cifferent "spit point” between tham; this
involves simply changing a key i the levels above, without deletion or nsertion.

1 the nods has to0 few keys (0 satisfy the invariant, and the next oldest or next
Youngest sibing s at the minimum for the nvariar, then merge the node with ts
sibing: i the node is a non-eat, we wil need to incorporae the “splt key” from
the parent into our merging. In either case, we will need 1o repeal the removal
algorittm on the parent nads to remove the “spif key” that previously separated
these merged nodes — uriess the parent i the root and we are removing the
final key from the root, in which case the merged node becomes the new ool
(and the tree has becomeone levelshorler than before).

Inta:

Delte 13:

Delte 15

1[9[io] |[11f12[][162072:
efel TleT-T Tl

Trees are used in many other ways in the computer science. Compilrs and database
are two major examples in this regard. In case of compilers, when the languages are
ransiated into machine language, tree-ike structures are used. We have ako soen an
‘example of expression tree comprising the mathematical expression. Let's have more
discussion on the expression rees. We wil see what are the bensfis of expression
rees and how can we buid an expression tree. Folowing is the figue of an expression
ree.

In the above tree, the expression on the left side s a + b * ¢ while on the right side, we.
have d * o + £ g.If you look at the figure, it becomes evident that the iner nodes.
contain operators while leaf nodes have operands. We know that there are two types of
nodes in the tree L. inner nodes and leaf nodes. The leaf nodes are such nodes which
have left and right subireos as nuil. You will ind these at the bottom level of the tree.
“The lea nodes are connscled with the inner nodes. So in trees, we have some imner
nodes and some leaf nodes.
In the above diagram, all the inner nodes (the nodes which have ither eft or right chikd
or both) have operators. I tis case, we have + or * as operators. Whereas leaf nodes
contain operands only ie. a, b, ¢, d, e, f, g. This tree is binary as the operators are
binary. We nd have seen
Inthe one operand is on
the left side of the operator and the other is on the right side. Suppose, f we have
+ operator, it wil be witen as 2 + 4. However,in case of mulplcation, we wil wie as
56, We may have unary operalors like negaton (- of in Boolean expression we have
NOT. In this example, there are allthe binary operators. Therefore, this tre is a binary.
ree. Thisis ot he Binary Search Tree. In BST, the values on the lftside of the nodes
are smaller and the values on the right side are greater than the node. Therefare, tis is
012 BST. Here we have an expression tree with 10 Sorting process involved
“This s not necessary that expression rae s always binary tree. Suppose we have a
unary operator ike negation. In his case, we have a node which has (-)in it and there is
oy one leaf nade under . It means just negate that operand.
Let's talk about the traversal of the expression tree. The inorder traversal may be
execited here.

Lecture-18
Binary Search Tree (BST)
ABinary Search Tree (BST)is a ree in which al the nodes folow the below-menioned
properties -

« The et sub-ree of a nade has a key less than or equal o s parent node's ey.
+ The right sub-ree of a node has a key greater than to it parert node's key. This,
BST divdes al ifs sub-trees into two segments; the lft sub-tree and the right
Subdree and can be defined as -
left_subtree (keys) s node (key) s ight_subiree (keys)

Represertaton
BST is a collection of nodes aranged in a way where they maintain BST propertes.
Each node has a key and an associated value. Whike searching, the desired key is
compared to the keys in BST and i found, the associated value s reteved.

Folowing is a pictoral representation of BST -

w) (w (= =
< L < &

We observe that the root nods key (27) has al less-valued keys on the left sub-ree and
the tigher valued keys on the right sub-ree.
BasicOperators
Folowing are the basic operations of a free —
+ Search - Searches an slement in tree
+ Insert - Insarts an olement n a ree.
+ Pre-order Traversal - Traverses a e in a pro-order manmer.
+ In-order Traversal - Traverses a ree i an in-order manrer
+ Postorder Traversal - Traverses a ree in @ post-ordr manmer.
Node

02/02/2023

13

Define a node having some data, references [0t left and rght chid nodes.
sinot noda {
int data;
sirct node “lftChK;
strut node “rightChid;
¥
SearchOperaton
Whenever an lement is o be searched, start searching from the root node. Then if the
data s loss than the key value, search forthe element i the left subiree. Othervise.
Search forthe element in the right subtree. Follow the same algorittm for each nade.

Algorthm
struct node” search(int data){
sint node “curent = root;

print("Visting elements: °);

whie(current>data 1= data){

iffcurent

UL
PNt ("%d” curent->data);

ligoto left tree

fcunent->data > data){
cument = currentlefiChik

}lefse go toright ree.

else {

curent = curent->rightChid;

)

ot found:

ffcurent == NULLY
rotum NULL;

retum curent

)

nsert

Whenever an element s to be inserted, firs locate ts proper location. Start searching
from the oot node, then if the data is less than the key value, search for the emply
Jocation inthe left subtree and insert the data. Otherwise, search for the emply location
in'he right sublree and insert the data

Algorthm

void inser(int data) {

(struot node) mallocisizeof{stuct node));
strut node *parent;
tempNode->dala = data;

tempNode->efChik
fompNode->rightChid = NULL;

i tree is empty

ifioot== NULL){
oot = temphode:

Yeko {
current

ot;
parent = NULL:

while(1) {
parent = curert;

ligoto lft of the tree

data < parent->data) {
curent = curent eftChil;
linsert o th lft

ifcurtent == NULL) {
parent>efiChid = tempNode;
rotum;
)
}igo toight of the e
else {

curent = curer

>righiChi;

linsert 1o the right

ifcurtent == NULL) {
parent>rightChid = tempNode:
rotum;

)

Graphs Terminology
Agmoh contsof.
Ase, V,of vertices (nodes)
Aemiocion. .o e o eaioe o caled edges (1)
Edges, alo caled arcs, ae represented by (u,) and are sither:
Dirocted if the pairs are ordered (u, v)

Undirocted if the pairs are unordere

Agaphiea il oprsersionof e of oects whe some pais of oiects are
connected by fnks. The iterconnected objects are represered by poinis femed as
verdces, an e e ot cormor v voriees ot coed o

Fommaly, a graph s a pair of sefs (V, E), where V is the set of verices and Eis the set
of edaes, connecting the pairs of vertces. Take a ook a the folowing graph

a b

(= d e
In the above graph
a. .. d,e}

Anedge is Incident on a vertex i the vertex s an endport of the adge.
‘Outgoing edges of a verex are drected sdges that he vertex s the. Incoming _origin,
edges of a vertex are directed edges tha the vertex i the destination. Degree of

in- e
Paralradgos o i odes v o5g0s of e same ype and onericas
Seitioop 13 am e it th an vercn e same verox

Simple graphs have no paralel edges or self-0ops
Propertios

¥ oraph, G, medges then L)
¥ s e macges
gt = = oot
¥ s e, . b ocges ar verces
1 Gis alo directed then m < n(n-1)
I Gis also undirected then m < n(r-1)2
Soa simple graph with nvertices has O edges at most
More Torminology

Path is a sequence of alernating vetches and edges such that sach successive vertex
is comected by the edge. Frequently only the vertices are listed especialy i there are.
paralie edges.

Cyclo is a path tht starts and end at the same vertox
Simple path is a path with distinct verticos.

irected path is 3 path oforly irected edges
et cyl . cye ooy drocid g
Sub-graph is 3 subset of ve
Sparningsubraph cotas o s vetces.
Connected graph has all pairs of verices comecied by at least one path
‘Connected component is the maximal comected sub-graph of a ncomected graph.
Forest is a graph wihoul
Trees a comected forest (previous type of trees are called rooted ees, these are free
rees)
Spanrig e 8 soumig sbgrach o ko s e

2

1 oot groph v vricos and m g
- WG s comnected then m 2.
+ WGiaveethenm=n-1
W Gis aforestthen m s n
Graph Traversa:
1. Depth Fist Search
2. Breadh First Search

Lecture:20

‘Depth First Search:

Deplh Fist Search (DFS) aigorithm traverses a graph in a depthward motion and uses
8 sackiormanberto gt e e variexto st asearch,when dad o oG in
any ier

e e gvn o, O sgor s (0mS 10410 Dlo G0 E o
Bt fun F and sy 1 C. N erplye bo o

ko ot et vor ik o i isly . P
+ Rule 2- If no adjacent vertex is found, pop up a vertex from the stack. (It wil

popup all he vertices from the stack, which do ot have adjacent verlces.)
+ Rulo 3 - Repeat Rule 1 and Rule 2 un the stack is emply

Step Traversal Doscription

\\ - / 5 Intiaize the stack.

N B

02/02/2023

14

6
We check the stack top for
retun to_ the previous node
O and check If it has any
9P | unvisited nodes. Here, we,
A | find D to be on the top of the
o | siack
Stack
7
© | Ony unvisited agacent node
o | is fom D is C now. So we
Visit €, mark it as visited and
A || putit onto the stack.
Stack

As C does not have any unvisited adjacent node 5o we keep popping the stack unti we
find & node thal has an unvisiled adjacent node. In his case, there's none and we keep
Popping un the stack is empiy.

:
| we can pick any of them. For
[o A
B
ol | Aot corars o
o]
.
o e e o,
o
s
top B visited and put onto the stack.
o | s
oo s
:
=
Lecture:21

‘Breadth First Search

Breadth First Search (BFS) akgorithm raverses a graph in a breadthward motion and
uses a queue (o remembr 1o got the next vertex 10 start a search, when a doad end
occurs in any iteraton.

Asinthe example given above, BFS aigorithm raverses from Ao B 10 E o F first then
o C and Glasty o . It employs the folowing rles.
Rule 1 - Visitthe adjacent unvisited vertex. Mark t as visited. Display i. Insert it
+ Rule 2 If o adjacent vertex s found, emove the frst verex from the quece.
+ Rule 3 - Repeat Rule 1 and Rule 2 unt the queue s emply.

Step Traversal Description

Iniaize the queve.

6
Now, S is fef with o unvisited
adacent nodes. So,
Gequee and find A

7

From A we rave D as
unvisited adjacent node. We
mark it as visited and enquave
it

A tis stage, we are lft with no unmarked (unvisited) nodes. But as per the aigorthm
o o i

we keep on dequeuing in order o get all unvisited nodes. When the queve gels.
emptied, he programis over.

2
o start from
Visiting S(starting node), and
mark it a visted
3
We then see an unisited
adacent node from S. In tris
example, we have three nodes.
but alphabetically we choose
mark it as visied and
" enqueue it
4
Nex, the unvisited adjacent
node from S is B. We mark it
as visited and enqueue 1.
5
Nex, the unvisited adjacert
e from S is C. We mark it
as visited and enqueue 1.
Lecture:22

‘Graph roprosentation
You can represent a graph in many ways. The two most common ways of epresenting a
graph is s follows:

Adjacency matrix
‘Anadjacency marix is a VxV binery matrix A. Element Al i 1 i thre is an edge from
Vertex i 0 vertex | ese Aljis 0.
Note: A binary malrx s a matrx n which the cels can have orly ne of two possible
values - eiher a 0 or 1.
“The adjacency matrx can also be madified for the weighted graph in which instead of
Storing 0 or 1 i Al the weight o cost o the edge wil be stored.
n an undirected graph, ifALj= 1, then AJi = 1. In & drected graph, i A
then Aj may or may o be 1.

diacency matix provides constant time access (O(1)) todefermine if there is an
‘edge between two nodes. Space complexity of he adjacency matixis O{V2).
The adacency matix of folowng g s
1234
1:0101
2:1010
3:0101
41010

(L 2]

o o

The adjacency matrix of the following graphis:
1234

1:0100
2:0001
3:1001
4:0100

02/02/2023

15

e 0

Adjacency list
“The other way to represent a graphis by using an adjacency list. An adjacency list s an
armay A of separate lists. Each clement of the array A s a list, which cortains al the
orees vt oro adcor o e

graph, the weight or cost of the edge is stored along with the vertex in
Tt i . I e o e 1 1o A s ol o0 . 1t
A

The space complesity of adacency st is OV + E) because in an adjacency st
fomatan s tred ony fr tose edge et aomaﬂy e o be g I 2 o of
where a matix is sparse using an adja ot bo very useful. This
i bocauns usig an sepoary il s 19 3 X o spacs whore mostof e
lomarts i bo 0, anyway, I such cases sing an ccenc st s bt
i fs a mat i which mest of 1 slemonts ara zaro, wereas a
denos i o 8 ok n which mostaf o slment e e

[2]

o 2]

‘Consider the same undirected graph from an adjacency malrix. The adjacency st of the
graph is as follows:

A—2—

A2—1-3

As—2t

13

*—o

e 0

‘Consider the same directed graph from an adjacency marix. The adiacency list of the
graph is s follows:
AT

A2a

=14

A2

Lecture23
Topological Sorting

(0AG)is

o o avoy il g et »conan blor s b s, Topologn
St fora traph 51 ossie e fapn s ot # BAG.
For s, a opologica st o e olwing raph 3 423 10 Trere can bo

than one topological sorting for a graph. For example, another opological sorting
ot Tolowing Gaph 1.+ 5.2 31 0" T frs voriox i apological orig 1o abways &
vero th o100 3. (e i 0 g 9

Atgorithm to find Topological Sorting

e e o o o st o et et 1t s thn curstsly call DSt b
adacent verices I topologial soring, we use a lemporay stack. We dor pirt the
e, o e ro rocusvy <ol opclogeal sonig To 3 e Saacon
Veics, thon psh 110 sack. Fna, pin comots of sac e hl 8 vor 8
pushed 1o stack only when allof s acjacent vertces (and their adiacent vrtices and so
on)are already in stack.
Topological Sorting vs Depth First Traversal (DFS):
In DES, we pirt a vertex and then recursively call DFS for s adjacent vertioes. In
topological soring, we need to print a vertex before s adjacent verlices. For example,
in the given graph, the verlex ‘' shoud be printed before verlex 0’ but unike DFS, the.
vertex 4’ should also be printed before vertex ‘' So Topological soring i diferent from
DFS. For exampl, a DFS of the shown graph 15 %5 2 3 10 47, bul it is not a

Q © O
©

Dynamic Programming
‘The Floyd Warshall Algoritim is for soling the All Pairs Shortest Path problem. The.
probiem is to find shortest distances between every pair of vertces in a given edge
weighied directed Graph.

Exampe:

topologicalsorting

oot = -(0 5 1 10,
INF),
anr o

(NF, INF. INF. 0}
i rprsarts e folowng greh

3
Note that the value of graph{i[] is 0f i is equal to]
And graph{I[] i INF (nfiite) ifthere is no edge from vertex it}

Output:
‘Shortst distance matix
5 8 9
INF 0 3 4
INFINE 01
INFINFINF 0
Floyd Warshall Algorithm

e kst th st sam s e put gt s 1t . Thn, e
wpdate The

idea
¥k ane by e ik allvelce and updal o srres pte whchirlude e picked
vertex as an intermediate vertex in the shortest path. When we pick verlax rumber k as
an intermediate verlex, we aready have considered vertices (0, 1, 2, .. k-1} as
pair (i) of respeciively.

there are wo possivle cases.

1)kis o] aist]

2)Kis an intermediate vertex n shortest path from 10 . We updae the value of dist{]
as dist) + disti.
The folowing figure shows the above optmal subsiructure property in the alkpairs
shortest path probie

o 24 e 112

Lecture24

Bubbie S
"We 5 anunsorted ray forue example, Bubbe soraes O() e 50 wee
Keeping i shortand precise

1[5 [0
It ook 30 s e
P

Soitis akeady in sorled locations. Next, we

Next e compars 32 and 25 We vt bothars i acy e postons,
[14][zr [s][s][10

Tren e move o e et o vakes, 35 1.
1a][2r 30 8 |[10

We ko thn tht 10 smoler 9. Hercs ey e rotsred
1227 30 (38 |[10

these values. We find that we have reached the end of the anay. Afierone.
Horation, the array shoud look ike tis -

(o [ar [0[]

recise, we are now showing how an aray shoud look ke after each teration
Ao th sacend toraton. 1 $nou ook e e -

1a][2r 1030 [0
Note it afer ach erstona et one vabe moves st e
14 |10 [z |32 [

A o ' 70 usp e bl st et it sy s mphisy

WHM (=) =)=
o s ok s s 1
e A —
S v i o e o
e
o
5

end BubbeSort

Pseuoode
Wo bserv inlgr et Busle St compars oach i of oy dlent uiess
the whole aay s completely sorted in an ascending order. This may

Complsty sces ke whet 1 he aey needs o mere SwappIn 2% a1 Samas
are already ascending

To ease-out he issue, we use one flag variable swapped which wil help us see if any
o101 Iappenes o o I 10 suep s e L e ary s o e

Peastounso of iesor dgore can be witen s folows -
procedure bubbieSor(st - array of tems)

e

02/02/2023

16

for] = 0o loop-1 do:

pare the adacent elements *
iftst] > listj+1] then

1 swap them °1
‘swapy ist], istj+1])
wapped = e

endif
end for

o rumber was swapped that means
array is sorted now, break the loop./

iinot swapped) then
break
endif
end for

‘ond procedur retum st

Lectye2s
—
et ot sy s s
(10 [z |[an][0] 2] 10 [[]

rserion sor compares the firs two clemens.

It5uaps 33 wih 27. 250 chocks wih all tho clemerts o sored subis. Horo we 506
that the sorted sub-ist has only one element 14, and 27 is greater than 14, Honce, the.
Sorted sub-ist remains sorted after swapping

[z [] 10 3][19[4 | 4]

These vakes are not in a sorted order,

[z m\w| 19[4z | aa |

Hence, we swap the 100

G oEnan

‘Again we find 14 and 10 in an unsorted order.

“This process goes on unl al the unsorted values are covered in a sorled sub-ist. Now.
we shall see some programming aspects of nserton sort

Agorithm

Nowus v bige i fbow 1 s lecriue works, 50 veca dove
simple steps by which we can achieve insertion
Stop 1 - It s the firstclement, it aready sorted. return 1
Step 2 - Pick next element
‘Step 3 - Compare with all slemeris in the sor
Stop 4 SHRoE o elrmets In e st it 1 grate than
tobe sorted
Stop s - Insert the
Stop 6 - Repeat un st i sorted
Paurooork

procedure insertionSor(A- aray of tems)
st

l holePositon > 0 and AfholePositon-1] > vaueTolsert do.

‘AlholePositon] = AfrolePositon-1]
holePositon = holePosition-1

end whie

AltolePositon) = vaeTolnsert
end for

end procedure

Lecture26.
-
ot o ko st ara s o sl
10)z][10 (o8 [1042][)
For o s oo i h a1 v T s sl To s

position where 14 s stored preserily, we search the whole st and find that 10 is the.
lowest vale.

DS

Sowe eplaoe 14 with 0. Affer one leraion 10, whih happens o bs the minimum
value inthe Ist, appears in the frs positon o the sorted st

(o) [ss][0

For oo oo, s 515 e et scamig s st ot
i e
[0 [[| 14 (2 [0 []

We find it 14 s the secord lowest value inthe st and it shouid appear at the second
place. We svap hese values

same process is applied o he rest o the flems n the array.
Following is a pictoria depicton of the enire sorting process -

o[z [0 |10 [][]

DR

o) [sa] 0] 22 [o) [][2)

Nowft s oar som programming aspecis of selction ort
Algorthm

Step 1 - Set MIN o location 0
Stop 2 - Search the minimu element in the st
Stop3 - Swap with value at location MIN

Stop 4 - Increment MIN o point o next element
Stop 5 - Repeat un st is sorted

Pseudacode
procedure selection sort
fst: amay of tems
size offst

fori=
P st f———

check the element to be minimum

forj =
ifls] < stmin] then

endif
end for

1* swap the minimum eloment with the curent element'/
ifindexin

Sl st
end if

end for

end procedurs

02/02/2023

17

Lecture27
p—
T s o, v ke an oo aray o ko -
10)z][10 (o8 [1042 [)
Vi o e o rt i nwi are vl i e o
e i e o o v ek o 1 o s s

into two arays of size 4

B

onc

This doss ot chango e sequerca of appearance offams i tha rignal Nowwe
diide these two arrays ito haives.

[+]=] (=]le] [=]e] [=]]

We further ivide thoso arays and we achiove atomic value which can o more be

HEEEEEEE

Now we combine them in exactly the same manner as they were broken down. Please

ot the color codes given {0 those fsts.

We first compare the element or each st and then combine them o another st in a
manner. We soe that 14 and 33 aro in sorted positons. Wo compare 27 and 10

and n the target st of 2 values we put 10 first. folowed by 27. We change the order of

19and 35 wheroas 42 ad 44 ae placed soqventaly_

14| ss |

-)]

In e next eraon of the combining phase, we compar ISt of two cata vakues, and
merge them o a st of found data values placing allin a sored order.

Doaojoann

Aferth final merging, tho s shoul look e s -

Now e shouid learn some programming aspects of merge sorting.

Agorithm

sort keeps on dividing the list inlo equal halves uni it can no more be divided
B Getition, 15 oy ons lemnt i he 5., 1 s sond. Thon, merge sot combins
ihe smalkr sorted ists keeping the new fs sorted ot
Step 1~ it i orly one element n the fst t s aready sorted,etum.
Stop 2 - divide the st recursively into two halves unl it can o more be divided.
Stop3 - merge the smaler fss ito now st in sorted order.
o in he same way.

prcedirs mergsor vara s aray)
if(n==1) ret

et ey a0 ao2]
var 2 as amay aln]
1" 1)
3
retum merge(I, 2)
end procedure
P R T
varc.
S B e)
i (2(0] > bO])

204 (0] 0 the end ofc.
remove 0] fromb
oo

2dda(0] o the end ofc
remove (0] froma
endif
endwhie
while (a has clemerts)

add a[0]to the end of c.
remove a[0] froma
whie

while (b has clemerts)
add b{0] to the end of c
remove bjo] fromb
o

ond procedurs

Lecture:28

Quick sort

Quick sort is a highiy effcient sorting algorthm and is based on partiioning of array of

data into smaller arrays. A large array s partiioned into two artays one of wich hols
ller than the specified value, say pivot, based on which the parton is made

and another array hokds vakes greater than the pivot vale.

Quick sort parttons an array and then calls itsolf recursively twice to sort the two

et ey Ths aoriv o e efcn o sz dla s 3 s

caso complexity are of O(rF), where i s the rumber of

Farton
Falowing et eproseniaton exins how o i e pivotvle inan aray.

Unsorted Array

“The pivot value diides the st nto two parts. And recursivey, we fnd the pivot for each
subists unt a Ists cortains only one element,
Quick SortPiot

Based on our understanding of partioring in quick sor, we wll o by o wite an
algoritm for i, which is as follows.

Step 1 - Choose the highest index value has pivol

Stop 2 - Take two variabls o pointeft and right of the st exciuing pivot
Stop3 - eft points o the ow inc

Stop 4 - right poins to the high

Stop 5 - while value atleft s less than pivot moveright

Step 6 - while value atright is greater than pivot moveeft

Step 7 -~ if both step 5 and step 6 does not match swap lef and rght
Step 8 - iflft > right, the point where they met is new pivol

Quick SortPiotPseurkocods

“The pseudocode for he above aigoritm can be derived as ~

function pariionFunc{et. ght. pivl)

‘while Af-HeftPointer < pivot do

lido-rothing
end whie

il T ler >0 88 Aol > ot
ldo-
o

fleftPointer >= rightPointer
breakc

eke
‘Swap lftPoiter rightPointer
endif

endwhie

swap eftPointeright
tPointer

end function
CQuick Sor

Using pivot algoritm recursively, we end up with smalkr possible partiions. Each
parition’s then processed for quick sort We define recursive aigort for quicksort as.
folows -

R e

Step 2 - partion the array ol value.

Stap3 - Qucksort ot paion reusivel

Stop 4 - quicksortright partion recursively

Quick SortPseudocode

“Toget morento i, et see the pseudocode for quick sor algoritm -

procedure quickSor(let right)

liigss
retun

wot = Afright]

partion pamnenmcuem right, pivot)
GickSonrtpaiton
R o

i procsrs

Lecture:20
Hoap Sort

Heap sort is a comparison based sorting techrique based on Binary Heap data

Structure. It is similar to selection sort where we first find the maximum element a
ihe maximum element at the end. We repeat the same process for remaiing

element

What i Binary Heap?

Lt unfst cfln o Compels By T, A ot Lry Use b ¢ byt n
I overy lovel, except possiby the ast,is completely filed, and al nodes are as far

i posse

ARl Heaois o Complls By Tree hers ams are siorad n gpecil order

Such that valus in a paren node s greater(or smaller) than the values in s two

pades.Tro fomer o cled s ax e and e ter i caled i hesp The e can

be represerted by binar tree o

Way aray based ropresentaion for Binary Heap?

Since By Hesp s o Comlte By Tee, 1 can be caly presertdas ey
and array based represertation i space effcien If the parent node is stored at ndex |
e o < ch can be cakulted by 2+ 1 and righ chid by 21+ 2 (assuming e
indexing star

Heap Son kgt forsotng i creasing oder:

1. Buid a max heap from the input data.

2. Attis point the largest item is stored at the oot of the heap. Replace it with the last
item of the heap folowed by reducing the size of heap by 1. Finaly, heapiy the footof

Reest o depsatl sz of e i getrton 1
b

Vo e e e
a node onl i ts chikiren heapified
1 Fepicaton it be garrmedin o bt p o
ots u with the help of an example:
Iput data: 4. 10,3, 5,1
40)

I
1001) 32)
"
53) 104)

“The numbers in bracket represent the indices in the aray
represertation of data

‘Appling heapify procedure 1o ndex 1
40)

A
1001) 32
v

5 14)

‘Applying heapify procedure 1o index 0:
100)
n
s1) 3(2)
A

40) 1)
“The heapify procedure cals itself recursively to buld heap.
ntop down maner

ix Sort
T e syt oo e e S o o
QuikSn . ac)le Oirkogn). . ey ca
ot e o s e s ot son (v o hen lmerts
oo tom
et 1 e somansar i angefrom 1 (o7

o cart i coueig e bcause curig e i ke O i b, varme i
comparison bosedsring it Can s st such n oy i nsar e Badi

Sails o arswer. e s of R Sor 1o 8 g by gt <o s from oast
St g o s Sgncan Gt Rad ot s counig S0 2.3 s o

02/02/2023

18

Radix Sort

most
sgnfcart i
) Sortinput amay using counting Sort or any stable sort) according to the ith

Origna, nsorted st
170,45, 75,90, 802, 24, 2,66

‘Sorting by least signficant digi (15 place) gives: ["Notice that we keep 802 before 2,

bocause 802 occurred before 2 in the orginal Ist, and similarly for pairs 170 & 90 and

45875)

0,90, 802.2,24. 45, 75,66
Sorting by next digit (105 piace) gives: ['Notice that 802 again comes before 2 as 802
comsstefom 2t pia]

02,2, 244586
Sotting by iean g (1008 poco)gvs:

24, 46,66, 6, 50,110, 802
What s the running time of Radix Sort?
Lot there be d digs in input ntegers. Racix Sort takes O(d"(n+b)) ime where b is the.

ropresenting rumbers, for example, for decimal system, b is 10. Wrat

value of 7 If k i the masimum possiblo value, then d woud be O(ogs(k). So overall
tme compey s O((nt) " gk Which looks more han th e complexy of
‘comparison based sorting aigorthms for a large k Lt us first itk L
o Conoant i ihtcacs e complty esames OLom(ny. Bul ksl dossr bt
comparison based sorting aigorithms.

Linar Search

Lear s s o <k och dmrt o b o 1 sequorce, The oy, motod
hes a target in an amay and returns the index of the target: f ot
oo otame 5. wich s an vl o
int incarSoarchfint an(), nt target)

for(int 1= 0; 1 < arlengih; i++)

if(anf] == target)
retun

)
rotun -1;
)

Linear search loops hrough each element i the array; each oop body fakes corstant
time. Therefore,i runs in near time O(n).

Lecture:31
Binary Search

For sorted arays, binary search is more effciert than inear search. The process starls
from the middle of the nput array:

I the target equals the element i the middie, retum it ndex.

Ifthe targot is larger than the cloment n the midd, search the right haf

Ifthe target s smal, sarch the eft ha
In the two index ot indicates the.
searching boundary at each round
1 intbinarySearchiint ar). it target)

2
3 intfirst=0, last = arrlength - 1
4

5 whie (frst<=last)

6

7

8

9 retum mid;

10 i target > amic)

1 first= mid + 1.

12 ese

13 last = mid - 1;

n

15 rem -t

)

arr (3.9, 10,27,38,43, 82)

1
2
3 taget 10
4 fist 0, last 6, mid: 3, anfmic]: 27
5 first 0, last 2, mid 1, anfmic]. 9
6 first 2 last 2, mid:2, anfmid] 10
7
8
9
1
1

rget: 40
fist 0, last: 6, mid: 3, anfmic]: 27~ goright
. last 6, mid: 5, anfmid]: 43 -
first 4, last 4, mid: 4, afmic] 38
first: 5. last 4 ~ ot found

i

Binary search divides the array in the middie al each round of the loop. Suppose the
armay has length n and the loop runs in t rounds, then we have n * (1/2)° = 1 since at
each round the array length s divided by 2. Thus t = log(n). At each round, the loop
body takes constant time. Therefore, binary search runs in ogarithmic time Oflog 1)

“The following code implements binary search using recursion. To call the method, we
need provide withthe boundary indexes, for example

narySoarcnar, ,alongh- 1, et

binarySearchiint ar], it first, in last, in arget)
i (st >last)
rotum -1

int mid = (st + last) 1 2:

i arget ==arfmid))
retum mid
i target > amid])

retum birarySearchiar, mid + 1, las, target);
13 i target < anfmia
14 rotum binarySearch(ar, first, mid - 1, target):
)

Hashing
Introduction

“The problem at hands is to speed up

OBJECT - INTEGER

sorted, we can use the binary search, DATA HASH CODES

us the index for a given value. With this

Genertes an aress i e bl
The axampl o hesh i s 8 0ok call st ach bok [th trary

ique call number. A call number is ke an address: it els us where the book s mcaxeu
it orary, Many acadamic orares n tho Unfed Site, tses Lixary of Cong
oot for oo nbars. Th syt s 3 comesion o s Pk

o arrange materials by subjs
Arosn tcion ot e a. umum e s s coles o svrsl v fncton
Inprcice s el o g urcue unbers 1 tject. The ler s shys
oo (o 3roAmae) s i ofccs o e B

e o sy ot o o s o fokoning praperios

The prececur of siorg abessing hesh acion s o folowt
armay of size M. Chaose a hash function , that is a mapping from
G i misgos 6 1 Wl s oo i 3 ooy o s

pul hash function

table

™ e
™ o
wn L

Colisions.

e we put bfcts o 3 st s possbe vt afeet ciects 0y e
i) meli)mg. P 1 st T i cabec s aalsion.Hors . 1

o of colson o difrrt g A 28"
“Aar L TR

= am

How to resolve colisions? Where do we put
the second and subsequent values that hash
fo s same location? There are several

‘soparat chaining colision resolution.

“The big attracton of using a hash table is a constart-ime performance for the basic
operalions ad, romove, contan, size. Though, because of colisons, we cannot guarantee
th cortant unime inthewerstcase, Why? main tht ol or et cold il e
same index. Then searching for one of them will be equivalent o searching in a s, that
et b e, Hoveu e can uearss s eoeced concint e, it we
make sure that our lists worit become 100 long, This is usually i v
g oad factor ek koeps & vack of e verage agihof . 1 od facer
sproachs o e in acancad skl we crete @ bigger aray ad b of
elemerts from the od tabie ino

Aot tehmiue of cobsen rsoktion s noa proting. vo camit s at

ry the next siot k1. I that one s aceupied, we go to k+2, and st

Lecture:33
Hashing Functions.

hoosing a good hashing function, h(K), s essantal for hashable based searching. h
should distibLt the elements of aur collecion as unformly as possible i Jots” of
the hash table. The key criterionis that there shouid be a minimum number of colsiors.
If the probabilty that a key, k., oceurs in our collecton is P(K), then i here are m slots n
our hash table, 3 uniform hashing function, h{K), woul

> P= 3 PE= > rmat
Sometwaes s ey EPREur, For s keys ardancomy dstaged n
01, tren,
)= flor(mi)
Wil provide unform hasting

ing keys to natural pumbors
Most hashing functions wil first map the keys to some sef of natural numbers, say (0]
“There are many ways o do this, for example f the key is a siring of ASCII characlors,
we can simply add the ASCII represertations of the characters mod 255 (o produce a
number i (0.255) - or we coud xor them, or we could add them in pairs mod 261, or

Having mapped the keys to a set of natural numbers, we then have a rumber of

When using this method, we usually avoid certain vakues of m. Powers of 2
usually avoided, for k mod 22 simply selects the b low order bits of k. Unless we
Know that all the 25 possible values of the ower order bis are equally ke, ths
will not be a good choice, becatse some bis of the key are not used in the hash

function
Prime numbers which are close to powers of 2 seem o be gensrally good
choices form.
For example, f we have 4000 e e e chosn n overton abe
rganzton, bt wsh o rave ne rovoity of collios e ow
osem = 4053 (109 I e lrgot pime o hn 4096 27
2. Use the matipcaton method
iy o oy by o consirt A0 < A< .
o factorl art o e product
Mot 1 lms value
“Thus the hash functions:
(k) = floor(m * (i - floor(kA))

02/02/2023

19

In this case, the value of m is not critical and we typically choose a power of 2 50
that we can ge the folowing effcient procedure on most digial computers:
hoose m = 25
- Multply the w bits of k by floor{A * 2 to Obtain a 2w bt prodc.
Extract the p most sgrifcant b of the ower halfof tis produc.
It seems that

6180339887
is @ good choice (see Knuth, "Sorting and Searching’, v. 3 of “The At of
‘Computer Programming’).
3. Use universal hashing
A malcious adversary can always chose the keys so that they all hash (0 the
‘same sio, leading 1o an average O(n) retreval timo. Universal hasi o

function wil generate poor behaviour small and produces good average
performance.

02/02/2023

20

